0916-2410/10/¥500/論文/JCLS

京都大学

医用超音波イメージングにおける エコー信号間の相関を用いた微小結石検出法 =結石による送信パルスの波形変化を用いた結石検出=

1. はじめに

超音波検査は軟部組織描出能に優れ、放射線被ば くがなく簡便であるため臨床分野において広く用い られている。しかしながら、超音波検査の結石検出 能はX線検査と比較し大きく劣り、乳がん検診など 結石検出を必要とするスクリーニングには用いられ ていない。超音波を用いた結石検出法としては腎結 石トラッキング法^{11/2}が提案されているが、体外衝 撃波結石破砕術を目的としており、音響陰影が存在 するようなある程度大きい結石が適用対象である。 また、エコー信号強度の高い位置を検出する方法と してセル平均を用いた一定誤警報率法(3(4)が提案さ れており、この手法の結石検出への適用が報告され ている(5)(6)。しかし小結石は音響陰影を伴わないこ とが多く、またエコー強度も他の組織の鏡面反射成 分と比較し十分大きくないため、小結石に対して誤 警報確率を一定とする検出法は有効であるとはいえ ない。放射線被ばくのない簡便で有効な小結石検出 法を確立するため、超音波イメージング法における 結石検出能改善が現在強く望まれている。

我々は測定点後方のIQ信号間の相互相関を用い た新しい小結石検出法を提案し、その有効性を計算 機シミュレーションにより検証したため、本稿にて 報告する。

測定点後方のIQ信号間の 相互相関を用いた小結石検出法

提案する小結石検出法は測定点後方の隣接する2 走査線の超音波IQ信号間の相互相関を用いる。第

※本記事は第29回超音波シンボジウムで発表された論文に 基づいております。

宏文

第1図 隣接走査線のIQ信号間の相互相関を用いた 結石検出法の概念図

1 図は本プロセスの概念図である。測定点における 結石の有無を判定するとき、測定点の後方から返っ てきたエコーのIQ信号と、隣接する走査線の同じ 深さから返ってきたエコーのIQ信号との相互相関 を求める。この相互相関係数は以下のようにあらわ せる。

$$c(i, j) = \max_{l} g(i, j, l) \qquad \dots (1)$$
$$g(i, j, l) = \left| \sum_{J=S}^{E} e_{i,J} e^{*}_{i+1,J+l} \right| / \sqrt{p(i, j)p(i+1, j+l)}$$

$$p(i,j) = \sum_{J=j}^{j+L_w} e_{i,J} e_{i,J}^* \cdots (3)$$

ただし、e_{i,j}はBモード画像上の1ピクセルにおける IQ信号成分、iとjはそれぞれBモード画像の横方向、 深さ方向の座標、SとEは相関窓の始点、終点であ る。提案法は各測定点の相互相関係数を全観測領域 にわたって計算し、相互相関係数が大きく低下する 位置を抽出する。抽出された位置が結石の存在位置 となる。

結石が送信超音波ビーム内に存在する場合、クリ ーピング波、結石内を通過する高速波、結石内の多 重反射、回折波などの影響により送信波の波形は結 石通過後に大きく変化する。よって第2図のように 走査線内に結石が存在する場合、結石後方からのエ コーの波形は隣接する走査線のエコーでビーム内に 結石を含まない場合と大きく異なったものとなる。 エコーのIQ信号間の相互相関係数低下はエコー間 の波形が異なることを意味するため、相互相関係数 の低い領域を抽出することにより結石を検出するこ とができる。

3. 提案法の評価

3-1 シミュレーションモデル

我々はデジタル組織図を用いた計算機シミュレー ションにより提案する結石検出法の有効性を検証し た。このとき有限要素法⁽⁷⁾⁸⁾に基づく計算機シミュ レーションツールであるPZFlexを使用した。第3 図は本シミュレーションに用いたデジタル組織図で ある。組織図は厚さ2mmの表皮と後方の筋層から なり、筋層には幅0.1mmの脂肪滴が5%含まれてい る。鏡面反射エコーを生じる層状構造体と小結石と

の識別に対する提案法の有効性を調べるため、深さ 1 cmに直径0.5 mmの小結石を配置した組織図と厚 さ1 mmの結合組織を配置した組織図の2つを作成 した。探触子には幅0.5 mmの素子32個が0.1 mmの 素子間隙で並べられており、16素子もしくは17素子 を同時に作動させた。97本の走査線を0.1 mm間隔 で設定し、アポダイゼーションを用いて送受信ビー ムを形成した。相関窓の幅を5 mm、中心を深さ 15 mmもしくは20 mmとし、横方向に96個の相互相 関係数を計算した。送信超音波パルスは中心周波数 を4 MHz、-6dB帯域幅を60%とした。

3-2 計算機シミュレーションによる評価

第4図、5図は0.5 mmの結石もしくは厚さ1 mr の結合組織が深さ10 mmの中央に存在する場合にま ける、横方向の相互相関係数の変化を示している 結石が存在する場合、相関窓の中心が15 mm 20 mmのいずれのときも中央において相互相関係数 に急激な低下がみられる。提案法では相互相関係数 の低下により結石による送信超音波パルスの波形刻

化を検出し結石の有無を判定するため、この結果に より提案法による結石検出が実現可能であることが わかる。一方結合組織が存在する場合、結石が存在 する場合と比較し相関係数の低下が認められなかっ た。このことから層状構造体が存在する場合におい ても提案法では結石の誤検出を防ぐことが可能であ ることがわかる。以上より、エコー強度で検出が困 難な小結石に対して、結石による送信波の波形変化 に基づくエコーのIQ信号間の相互相関係数の低下 を用いた検出法が有効であることが示された。

4. おわりに

本稿において我々はエコーのIQ信号間の相互相 関係数を用いた結石検出法を提案し、提案法により 鏡面反射エコーを生じる層状構造体と小結石の識別 が可能であることを示した。提案法では送信波が結 石を通過することによる送信波形の変化を検出する ため、層状構造体が多数存在する場合においても適応可能と考えられる。そのため、本提案法は超音波 検査の結石検出能を大きく改善し、乳がん検診をは じめとして多くのスクリーニング、臨床診断におい て超音波検査を第一選択へと変える可能性がある。

謝辞

本研究は、文部科学省科学技術振興調整費、先端 融合領域イノベーション創出拠点の形成プログラム の「高次生体イメージング先端テクノハブ」プロジ ェクトの支援を受け、日本超音波医学会研究開発班 の研究の一環として行われたものである。

<参考文献>

- Orkisz, M., Farchtchian, T., Saighi, D., Bourlion, M., Thiounn, N., Gimenez, G., Debre, B. & Flam, T. A. Image based renal stone tracking to improve efficacy in extracorporeal lithotripsy. *J. Urol.* 160, 1237-1240 (1998)
- (2) Chang, C.C., Liang, S.M., Pu, Y.R., Chen, C.H., Manousakas, I., Chen, T.S., Kuo, C.L., Yu, F.M. & Chu, Z.F. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy : Part 1. J. Urol. 166, 28-32 (2001)
- (3) Finn, H.M. & Johnson, R.S. Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates. *RCA Rev.* 29, 414-465 (1968)
- (4) Hansen, V.G. & Ward, H.R. Detection performance of the cell averaging LOG/CFAR receiver. *IEEE Trans. Aerosp. Elec*tron. Syst. 5, 648-652 (1972)
- (5) Zhu, Y. & Weight, J.P. Ultrasonic nondestructive evaluation of highly scattering materials using adaptive filtering and detection. *IEEE Trans. Ultrason. Ferroelect. Freq. Contr.* 41, 26-33 (1994)
- (6) Kamiyama, N., Okamura, Y., Kakee, A. & Hashimoto, H. Investigation of ultrasound image processing to improve perceptibility of microcalcifications. *J Med. Ultrasonics.* 35, 97-105 (2008)
- (7) Hossack, J.A. & Hayward, G. Finite-Element Analysis of 1-3 Composite Transducers. *IEEE Trans. Ultrason. Ferroelect. Freq. Contr.* 38, 618-629 (1991)
- (8) Lerch, R. and Kaarmann, H. Three-dimensionalfinite element analysis of piezoelectric media. *Proc. IEEE Ultrason. Symp.* 853-858 (1987)

	【筆者紹介】
瀧	宏文
	京都大学 大学院 情報学研究科
	通信情報システム専攻 佐藤研究室 研究員 〒606-8501 京都市左京区吉田本町
	TEL: 075-761-2437 FAX: 075-761-2437
t	藤 宣

佐藤

京都大学 大学院 情報学研究科 通信情報システム専攻 教授 〒606-8501 京都市左京区吉田本町 TEL:075-761-3362 FAX:075-761-3342