医用超音波

超音波画像における前処理手法の評価

=細径血管の抽出と表示を目的として=

1. はじめに

超音波画像に限らず一般の多値(濃淡)画像において、処理対象となる物体の輪郭を抽出するには画 像のもつ性質や特徴を有効に活用する前処理手法の 開発が不可欠である。一方余りに画像に特化した処 理を行うと操作が複雑になり効率を損なうことにも なるので、画像になるべく依存しない汎用性のある いわゆるロバストな方法の開発も重要である。

説

解

生体組織においては超音波の伝播が複雑であり、 透過波や反射波によって映像化される超音波画像に は斑紋状のスペックル雑音が多く境界もあまり鮮明 ではない。本稿では細径血管の超音波画像からその 輪郭を抽出する前処理手法を紹介し、それらの評価 法を述べる。

超音波断層像において、血管が比較的太く周囲組 織との濃淡差が大きく鮮明である場合には、前処理 とそれに続く2値化は比較的容易であるから血管抽 出の問題は余り生じない。しかし細径血管では周囲 組織との濃度差が極端に小さくなりまた血管の境界 像もスペックル雑音などで不鮮明になり、一般に適 用されるような単純な平滑化や境界強調では精度の 良い輪郭抽出は困難となる。また処理結果が超音波 像の個人差による影響を出来るだけ受けないように することも必要であり、画像に適応しながら画像演 算をする前処理手法を以下に概説する。

2. 細径血管像

処理対象画像は微細血管構造映像化システム¹¹で 得られた血管断層像である。このシステムは直径が

※本記事は第29回超音波シンポジウムで発表された論文に 基づいております。 東京電機大学 伊東 正安

2~数百ミクロン、太くて1 mm程度の血管を映像化 することを目標に開発されたものであり、第1 図の ように1(cm)×1(cm)×3(cm)の範囲を30 MHz の探触子で機械的に走査し128枚の連続した断層像 を三次元データとして出力される。1 枚の断層像は 512×512画素 8 ビットの濃淡画像である。

3. 前処理

一般に画像分割により濃淡差から境界を抽出する には、画像の平滑と輪郭強調の後に多値化処理が行 われる。実際の超音波像において、血管は低濃度の 領域として表示されからその輪郭は2値化により抽 出することが出来る。

画像の平滑化と先鋭化の手法は多種多様な方法が あり画像処理の教科書や文献に数多く掲載されてい るので割愛する。エッジ保存平滑化法は一般に有効 であるが、超音波画像では境界にもスペックル雑音 が存在するので効果的なエッジ強調は難しい。

超音波画像に対しては形状情報を基にするモーフ オロジー演算は画質や映像(診断)装置の影響を受 けにくく非線形フィルタ処理として有効であること がこれまでの研究から分かっている。モーフォロジ ー演算では構造要素の選択あるいは設定が重要であ り、処理対象パターンを考慮して予め構造要素の大 きさ、形、値などを用意しておき、評価関数の結果 から最適な構造要素を決定する適応的な方法も報告 されている。また局所可変構造要素を用いたモーフ ォロジー演算⁽²⁾は画像の平滑と先鋭を同時に行うこ とが出来る特性をもっている。本稿ではこの手法を さらに発展させ、それらの手法をいくつかの尺度で 評価する。

4. 適応モーフォロジー演算

処理全体にかかわる個々のパラメータに対して最 適値を決定しながら一連の画像処理を進めれば、画 像あるいは目標に適応した演算が可能になる。ここ での適応モーフォロジー演算は、局所画像の特徴が 構造要素の値に自動的に反映されるように設定して ある。構造要素の形は血管を対象とするため円形あ るいは球状とする。

濃淡画像に対するモーフォロジー演算は2値画像 から発展したもので、画像の前処理や後処理におけ る画像の平滑や先鋭化を含め、形状の認識や表現に 有用である。演算は画像と構造要素の定義域で決ま る最大値や最小値で決まり、erosion、dilation、opening、closingの4つの基本演算がある。詳しくは専 門書や文献を参考されたい。ここでの適応モーフォ ロジー演算はその構造要素の値が構造要素だけでは なく画像の値もかかわるように組み込んだもので、 以下のように定義してある。画像および構造要素を 各々f(X)、g(Z)とし、ここでは構造要素を座標と 画像の関数とし適応モーフォロジー演算ではg(Z) をg(f(X), Z)とする。F、Gは各々画像および構造 要素の定義域である。

(1) Erosion

 $E(f, g)(X) = \min_{\substack{X+Z \in F \\ Z \in G}} \{f(X+Z) - g(f(X), Z)\} \dots \dots (1)$

(2) Dilation

 $D(f, g)(X) = \max_{\substack{X-Z \in F \\ Z \in G}} |f(X-Z) + g(f(X), Z)| \qquad \dots (2)$

(3) Opening

 $O(f, g)(X) = D(E(f, g), \overline{g})$ …(3) ただし、

$$\overline{g}(f(X), Z') = \min_{\substack{X-Z' \in F \\ Z = C}} |g(f(X-Z')| \qquad \cdots (4)$$

$$C(f,g)(X) = E(D(f,g),\overline{g}) \qquad \cdots (5)$$

ただし、

$$\overline{g}(f(X), Z') = \min_{\substack{X+Z' \in F \\ Z' \in C}} \{g(f(X+Z')\} \qquad \cdots (6)$$

g(f(X), Z)を単にg(Z)とすれば従来のモーフォ ロジー演算と同じ結果になる。適応型モーフォロジ ー演算には、g(f(X), Z)をどのように構築するか が重要な問題であり、式(7)、(8)のように以前発表⁽²⁾ した局所可変構造要素(構造要素1)と平滑と先鋭 化が余り強過ぎないように改良した構造要素2によ る前処理効果を今回検証し比較した⁽³⁾。構造要素1、 2を用いるモーフォロジー演算をここでは各々適応 モーフォロジー演算1、2と呼ぶことにする。

(1) 構造要素 1

 $g_1(f(X), Z)$

$$g_1(f(X), Z) = \alpha (f_{\max} - f_{\min}) + \beta |f_{\max} - f(X), f(X) - f_{\min}| \qquad \cdots (7)$$

ただし、*f*_{max}、*f*_{min}は構造要素を画像に適用したとき、その領域内における画素の最大値と最小値である。またα、βは重みを与えるパラメータである。

(2) 構造要素 2

 $g_2(f(X), Z)$

$g_2(f(X), Z) = A_g \Delta e^{-\frac{ f(X) - m ^2}{B_g \sigma^2}}$		•••(8)
$\Delta = f_{\rm max} - f_{\rm min}$		•••(9)
$m = (f_{\rm max} + f_{\rm min})/2$		•••(10)
ただし、A, B, σはパラメータである。	1	

5. ファジイモーフォロジー

画像の適合概念をファジイでモデル化したファジ イモーフォロジー⁽⁴⁾を簡単に紹介する。画像A、B を正規化し0と1の間の値を取るメンバーシップ関 数 $\mu_A(x)$ 、 $\mu_B(x)$ で表す。画像Bが画像Aに含まれる (または属する) 度合はインデックス関数

 $I(B, A) = \inf \min[1, 1 - \mu_B(x) + \mu_A(x)]$

で表される。この関数を基に実際にはAを画像、B

を構造要素とし、ファジイモーフォロ-ジー演算は 以下のように定義されている⁽⁴⁾。

(1) Erosion

 $A \Theta B$

 $\mu_{A \ominus B}(x) = I(B_x, A)$ $= \inf_{z \in G_x} \min[1, 1 - \mu_{B_x}(z) + \mu_A(z)]$...(11)

(2) Dilation

 $A \oplus B = (A^{\mathcal{C}} \Theta (-B))^{\mathcal{C}}$

- $\mu_{A \oplus B}(x) = 1 I((-B)_x, A^C)$ = sup max[0, $\mu_{(-B)_x}(z) + \mu_A(z) - 1$] ...(12)
- (3) Opening

(4) Closing

 $A \bullet B = (A \oplus -B) \Theta - B \qquad \dots (14)$

上式でB_xは構造要素Bを原点からxだけ移動した 構造要素を示し、-Bは構造要素Bを、原点を中心 に反転した構造要素である。

ファジイモーフォロジー演算の数学的構造と特性 は従来のモーフォロジー演算に類似している点があ るので、5章で実際の超音波画像に応用し定量的に と比較してみる。

6. 超音波画像の前処理と評価関数

前章で述べたように超音波画像の前処理に適当と 思われる4つの処理(フィルタ)を施してみた。写 真1は血管の超音波断層像である。中央に太い血管

写真1 血管の超音波断層像

があり両側に細い血管が見える。写真2は参考のた めエッジ保存平滑化を行った画像である。スペック ル雑音がまだ血管内外に残存する。適応モーフォロ ジー演算1、演算2によるClose-Opening(画像に Opening処理をした後さらにClosingの演算をする) 画像を各々写真3、4に示す。明らかに画像は平滑 化されている。エッジの先鋭化については視覚的に 明瞭ではないが、プロファイル、血管辺縁の濃淡差 や後に行う定量評価からその効果が分かる。ファジ イモーフォロジー演算の結果を写真5に示す。平滑 効果はあるがこの方法ではエッヂの先鋭化は出来な い。

次に4つの処理(フィルタ)に対して、次の4つの評価尺度を計算し、定量的に比較する。

写真2 エッジ保存平滑化法

写真3 適応的モルフォロジー演算1 (構造要素1を用いた場合)

写真4 適応的モーフォロジー演算2 (構造要素2を用いた場合)

写真5 ファジイモーフォロジー演算

6-1 評価尺度

ここでの前処理は一連の超音波画像から血管抽出 を容易にすることが目的である。最終的には血管を 三次元的に表示するから、前処理手法の評価には断 面だけではなく血管としての断面の連続性も考慮す る必要がある。

(1) 分離度

境界は2つの領域を分ける位置に存在するから、 分割された2つの領域がどの程度互いに分離してい るかを示す尺度を分離度としている。分離度は画像 をあるしきい値で2つの領域(クラス)に分割した とき、各クラス内の分散が小さく、クラス間の分散 が大きいほど2つの領域が分離していることを示す 統計的な尺度であり、次式で定義される。

$$\eta = \frac{\sigma_b^2}{\sigma_w^2 + \sigma_b^2}$$

 σ_{w}^{2} 、 σ_{b}^{2} は各々クラス内分散、クラス間分散である。また $0 \le \eta \le 1$ である。この基本概念は既に2値 化の最適なしきい値を決定する方法としてよく知ら れている⁽⁵⁾。

···(14)

(2) 濃度勾配

境界をはさむ血管内外に存在する2つの画素間の 濃度勾配を境界からの距離で加重平均した値であ り、画素が境界から離れるに従い勾配の重みを減じ ている。ここでは境界上に3×7画素の窓を設定 し、濃度差もこの窓内で計算した。

(3) 濃度差(輝度差)

境界をはさむ2つの領域間の濃度差であり、各領 域(血管外と血管内)の濃度平均値の差を尺度とし た。

以上が前処理の評価尺度であり、これらの値が大 きいほど血管抽出ための後処理も容易になる。ただ し、評価に使用する境界は2値化などを含む後処理 の後最終的に得た輪郭を用いている。

(4) 血管抽出率

血管断面は本来円形か楕円に近い丸みを帯びた形 であり、処理した総断面数の中で丸みのある輪郭が 抽出された割合を示す。残りは血管が抽出できなか ったということではなく雑音や不要成分も混在しそ れらが同時に血管上に表示されている場合などであ る。この指標は前処理を含む全体処理に対する1つ の評価を意味する。

6-2 定量評価

構造要素は直径が7 画素の球、パラメータは 適応モーフォロジー1:α=5、β=-3

適応モーフォロジー2: $A_g=2$ 、 $B_g=20$ 、 $\sigma=3$

とした。血管は太い血管と細い血管に分けて抽出 し、評価も第1表、2表のように別々に行った。評 価値は1枚の断層像ではなく血管抽出に使用した全 断層像における平均値である。なお表中次のように 用語を省略した。従来は従来のモーフォロジー演算 であり、適応1、適応2は各々構造要素1、構造要 素2による適応モーフォロジー演算である。ファジ イはファジイモーフォロ-ジー演算を意味する。

7. おわりに

第1表、第2表から適応モーフォロジー演算は輪 郭抽出など画像分割の前処理に有効であることが分 かる。実際の処理では、統計が取れる大きさの窓を 移動しながら上記の前処理を行い2値化し、2値化 画像を順次重ね合わせることにより細径血管の輪郭 を明確になるようさらに強調している。なお第2表 においては形状を問題にせず細径血管の抽出を目標 にしたため円形度を考慮した血管抽出率は計算して いない。

	従来	適応1	ファジイ	適応2
分離度	0.713	0.713	0.712	0.713
濃度勾配	7.921	7.981	7.994	7.914
濃度差	36.19	36.92	35.98	37.14
血管抽出率	0.68	0.914	0.766	0.961

第1表 比較的太い血管に対する評価

第2表 細い血管に対する評価

	従来	適応1	ファジイ	適応2
分離度	0.691	0.683	0.686	0.695
濃度勾配	8.332	8.306	8.67	8.444
濃度差	42.51	38.38	43.22	42.92

抽出された血管を写真6に示す(写真1とは異な る部位の血管超音波像データである)。

写真6 抽出した血管の三次元表示

謝辞

この超音波画像処理には平成16、7年度地域コン ソーシアム研究開発事業で開発された装置を使用した。またプログラム開発には本学院生斉藤弦、大洋 康明両君に負うところが大きく両氏に感謝する。

<参考文献>

- M.Ito, A.Yamada, K.Kato, K.Kobayashi, N.Kuroshima: "D velopment of ultrasound imaging and diagnostic system for fir blood vessel structure.", Proc. of 11th Congress of WFUMB, U trasound in medicine and biology, 32, 5S, 278 (May, 2006)
- (2) M.Tsubai, M.Ito: "Control of Variable Structuring Element on Adaptive Mathematical Morphology for Boundary Enhancement of Ultrasound Images", Trans. Information and Syster Vol.86-D-II, No.6, pp.895-907 (2003)
- (3) Masayasu Ito, Yuzuru Saito, Yasuaki Osawa: "Evaluation of Preprocessing Operations for the Extraction of Fine Blood Ve sels from Ultrasound Images", Proceeding of Symposium on U trasonic Electronics, Vol.28 (2007), pp.393-394, 14-16 (Novembe 2007)
- (4) Divyendu Sinha and Edward R.Dougherty: "Fuzzy Mathmatical Morphology", Journal of Visual communication and In age Representation, Vol.3, No.3, 286-302 (1992)
- (5) 大津辰之: "判別および最小2乗基準に基づく自動しき値決?
 法"、信学論(D)、J63-D、4、349-356 (1980)

【筆者紹介】———			
伊東正安			
東京電機大学	理工学研究科	情報学専攻	
特别專任教授			
〒350-0394 堵	于玉県比企郡鳩山	町石坂	
TEL: 049-296	-1294 FAX:0	49-296-6403	