0916-2410/07/¥500/論文/JCLS

U0611-05

説

単一気泡の非球形振動の観測

=膨張・収縮運動の非線形性が歪振動に与える影響=

1. はじめに

気泡の崩壊現象に伴う機械的作用を用いた技術は 様々な分野で応用されている。その代表例が超音波 洗浄や医療分野における超音波結石破砕法である。 最近では、この機械的作用を遺伝子導入に応用する 研究(ソノポレーション法)も盛んに行われている。 これらの技術においては気泡の崩壊機構の解明や気 泡状態の評価・制御が非常に重要な課題である。機 械的作用の主要因としては気泡の球対称崩壊時に生 じる衝撃波や非対称崩壊時に生じるマイクロジェッ トが考えられおり、これらに関する理論的、実験的 報告例⁽¹⁾⁻⁽⁵⁾は非常に多い。しかしながら、気泡状態 の評価方法・制御方法は確立されていない。

我々は気泡状態の評価という観点から、気泡の非 球形振動に着目している。ここで、非球形振動とは 球対称振動(等方的な膨張・収縮運動)とは異なり 歪振動(気泡形状の時間変化)を伴う膨張・収縮運 動である。気泡は低音圧下では球形形状を保ちなが ら球対称振動を行い、高音圧下では気泡は球形形状 を保てず非球形に振動し、歪が大きくなると分裂す る。非球形振動時の気泡からの放射音波には歪振動 に起因する放射音波成分が含まれ、この放射音波に より気泡状態の評価(気泡の崩壊の評価)が期待で きると考えられる。

過去の理論的な報告^{(1)®}において、気泡の球からの 歪が非常に小さく、膨張・収縮運動が線形と仮定す ると歪振動の振動周波数を解析的に求めることがで きる⁽¹⁾。しかし、膨張・収縮運動の非線形性が強い 場合は、歪振動の理論解析は困難であり、未解明な 部分が多い。また、実験的な観測結果から詳細な歪 振動の振動形態について報告した例も少ない。そこ 同志社大学 吉田 憲司·渡辺 好章

で我々は気泡の歪振動の振動周波数に着目して単一 気泡の非球形振動の観測を行った。本稿ではその観 測結果から膨張・収縮運動の非線形性が歪振動の振 動周波数に与える影響を検討した。

2. 微小振幅歪理論(1)(6)

気泡の膨張・収縮運動が線形とみなせる場合、歪 振動の理論的な解析は可能となる。本章ではその理 論的解析について述べる。

気泡の球からの歪が微小である場合の理論的な気 泡形状の安定性解析はPlessetにより行われている。 気泡中心から気泡壁面までの距離rは球面調和関数 を用いて下記のように示される。

 $r = R(t) + \sum_{n=1}^{\infty} a_n(t) Y_n(\theta, \varphi) \qquad \cdots (1)$

 $a_n(t)$ は歪の振幅であり、 Y_n はn次の球面調和関数 を示している。式(1)を用いて表した気泡形状は軸対称性を持つ。第1図は、 $a_n/R=0.2$ 、-0.2の場合に n次の球面調和関数を用いて表した気泡形状である。

式(1)においては、気泡の球対称振動はR(t)により

表され、歪振動は a_n/Rにより表される。 a_nが気泡 半径Rと比較して十分小さいと仮定すると、 a_nの運 動方程式は下式の二階の線形微分方程式に帰着され る。

$$\ddot{a}_{n}(t) + \frac{3\dot{R}}{R}\dot{a}_{n}(t) + (n+1) \left[-\frac{\ddot{R}}{R} + (n+1)(n+2)\frac{\sigma}{\rho R^{3}} \right] a_{n}(t) = 0$$
...(2)

ここで、pは水の密度、σは水の表面張力係数である。

式(2)において、 $a_n = (R_o/R)^{3/2} b_n$ の変数変換を行い、 さらに気泡の球対称振動が線形であると仮定 ($R = R_o - R_{\epsilon} \sin \omega_d t, R_o \gg R_{\epsilon}$) すると、式(3)のMathieu方程 式が導かれる。

$$\ddot{b}_n(t) + \left[\omega_{on}^2 + \left\{\left(n + \frac{1}{2}\right)\omega_d^2 - 3\omega_{on}^2\right\}\sin\omega_d t\right]b_n(t) = 0\cdots(3)$$

 $\omega_{on}^2 = (n-1)(n+1)(n+2)\frac{\sigma}{\rho R_o^3} \qquad \cdots (4)$

ここで、 ω_d は駆動角周波数であり、 ω_{on} は形状モードnの自然周波数である。

Mathieu方程式は $\omega_{on} = \omega_d/20$ 条件が満足されると き、発散する解を持つことが知られている。 ω_{on} が平 衡半径 R_o の関数であることに注意すると、このこと は $\omega_{on} = \omega_d/20$ 条件を満たす平衡半径で球対称振動 と歪振動が共鳴し(パラメトリック共鳴)、歪が成長 することを意味する。また、共鳴条件 $\omega_{on} = \omega_d/2$ は 成長した歪が駆動周波数の半分の周波数で振動する ことを示している。

3. 観測システム

本稿において紹介する非球形振動は定在波音場に より捕捉された単一気泡の非球形振動である。そこ で、気泡の捕捉方法及び観測システムについて説明 する。気泡の捕捉には直径45mmのランジュバン振 動子に直径60mmのアクリル製円筒容器を接着した セルを用いる。容器内に27kHzの超音波定在波を発 生させることにより、定在波の腹の位置に唯一つの 気泡を捕捉することができる。第2図は高速度ビデ オカメラを用いた観測システムである。気泡振動の 観測はシャドウグラフ法を用いて行う。キセノンラ ンプからの光をレンズにより気泡付近に集束させ、 この状態において、反対方向からその瞬間の気泡の 影を高速度ビデオカメラにより観測する。本観測に 用いた高速度ビデオカメラの最高撮影速度は40,500 frame/secであるため、27kHzの気泡振動を観測す ることは困難であるが、気泡が駆動超音波の基本周 期に比べ長期的に周期的な振動をしていれば、気泡 振動の再現は可能である。気泡振動の再現原理は参 考文献(7)に記述されている。

4. 非球形振動の発生条件

定在波音場により捕捉された気泡は、音圧が低け れば球形振動を行い、音圧が高ければ球形形状を保 持できず分裂する。非球形振動は球形振動と分裂現 象の境界で生じる。また、非球形振動時の気泡形状 は観測条件(音圧Pa、平衡半径Ra)に依存し、様々 な気泡形状が観測された。観測された非球形振動時 の代表的な気泡形状を第3図に示す。同図における 気泡形状は球形から歪んでいることが確認でき、そ の形状は軸対称性を持っている様に見受けられる。 この様な気泡形状は第1図に示した気泡形状と類似 していることが確認できるため、観測されたこれら の気泡形状を同図に示すように形状モードとして定 義する。

第4図は各形状モードの発生条件を示している。 同図における実線はすべての形状モードの観測結果 から求めた非球形振動の発生条件の近似曲線であり、 以下この曲線を境界線と定義する。同図から各形状 モードが境界線上において固有の発生条件を持つこ とが確認できる。各形状モードの発生条件について は参考文献(8)に詳細な理論的検討が記述されている。

5. 歪振動の定義

非球形振動時において気泡形状は時間的に変化す る。第5図は観測された各形状モードの気泡形状の 時間変化を表した模式図である。ただし、同図は気 泡形状の変化のみに着目しており、実際の非球形振 動は気泡形状の変化を伴う膨張・収縮運動であるこ とに注意したい。

時刻T₁における気泡形状が第5図に示す様に球形 から歪んでいる場合を考える。時刻T₂において気泡 形状は球形になり、時刻T₃における気泡形状は時刻 T₁における気泡形状の相対的に膨張(収縮)していた部分が相対的に収縮(膨張)した形状となる。その後、気泡形状は時刻T₄において再び球形となり、時刻T₅での気泡形状は時刻T₁での気泡形状と同一形状になる。時刻T₅以後、T₁ \sim T₅間の気泡形状の変化が周期的に繰り返される。

上述の観測された気泡形状の変化は、式(1)においては a_n の値が振動した場合の気泡形状の変化に相当する (T₁, T₅では $a_n > 0$ 、T₂, T₄では $a_n = 0$ 、T₃では $a_n < 0$)。したがって本稿では、この様な気泡形状の変化を歪振動と定義する。

膨張・収縮運動の非線形性と歪振動

本章では、膨張・収縮運動の非線形性が弱い場合 の歪振動の振動周波数について第2章で述べた理論 的な解析結果が観測結果と一致するかを検討する。 また、気泡の膨張・収縮運動が非線形性を呈した場 合の歪振動の振動周波数について検討する。

6-1 線形領域

第6図は P_a =12kPa、 R_a =77 μ mにおける非球形振 動(形状モード3)の観測結果である。第6図(a)は 駆動超音波の等価半径の時間変化であり、第6図(b) は第6図(a)の時刻①~⑨において観測された気泡像 である。ここで、等価半径とは気泡形状が球形と仮 定した時に気泡の影の面積から求めた半径である。 したがって非球対称振動においては、等価半径の時 間変化は気泡の平均的な膨張・収縮運動を表すと考 えられる。第6図(a)において、等価半径の時間変化 は駆動周期T_d (T_d=37µs) に同期した正弦波振動で あることがわかる。このことから、気泡の膨張・収 縮運動の非線形性は非常に弱いと考えられる。第6 図(b)における気泡形状の変化に注目すると、駆動超 音波の2周期の期間(約73us)で第6図に示した歪 の振動が1回行われていることが確認できる。した がって、駆動周期Taあたりでの歪の振動回数は1/2 回となり、 歪振動の基本周波数はfd/2(fd: 駆動周 波数) であると考えられる。この観測結果は第2章 で述べた理論的な解析結果と一致する。

6-2 非線形領域

膨張・収縮運動が非線形性を呈した場合の非球形 振動(形状モード3)の観測例を第7図に示す。駆 動条件は*Pa*=40kPa、*Ra*=50µmである。第7図(a)は

(b) x(relinex(0))時間支化 第6図 Pa=12kPa、Ra=77μmにおける非球対称振動 (形状モード3)

等価半径の時間変化であり、第7図(b)は第7図(a)の 時刻①~⑨において観測された気泡像である。第7 図(a)において、等価半径は駆動周期T_dの間に2回振 動し、膨張・収縮運動が非線形性を呈していること が確認できる。気泡の形状変化について着目すると、 駆動超音波の2周期の期間(約73µs)において第6 図に示した歪の振動が2回繰り返されていることが 確認できる。つまり、この歪振動の基本周波数は駆 動周波数f_dと等しいと考えられ、膨張・収縮運動が 線形である場合の基本周波数f_d/2より高くなってい ることがわかる。

第3図の境界線上において駆動音圧が大きくなる に伴い、膨張・収縮運動の非線形性はさらに強くな り、歪振動の振動周波数が高くなることを確認した。 第8図(a)(b)はそれぞれ P_a =47kPa、 R_o =41 μ m、 P_a = 56kPa、 R_o =28 μ mにおける非球形振動(形状モード 3)の等価半径の時間変化である。第6~8図より、 駆動音圧が大きくなると駆動周期あたりの膨張・収 縮の振動回数が増加し、膨張・収縮運動の非線形性 が強くなっていることが確認できる。

(b) 気泡形状の時間変化

第7図 P_a=40kPa、R_o=50 μmにおける非球対称振動 (形状モード3)

第8図 等価半径の時間変化

第9図は駆動周期(T_d=37µs)あたりの歪の振動 回数Nを計測し、その振動回数Nの駆動条件依存性 を調べた結果である。同図より、境界線上で駆動音 圧が低い条件(約20kPa以下)においては歪の振動 回数Nが1/2であり、駆動音圧が大きくなるに伴い振 動回数Nが増加し、歪振動の振動周波数が高くなる ことが確認できる。

この様な歪振動の振動周波数の変化は、膨張・収 縮運動の非線形性により膨張・収縮運動の振動周波 数成分が変化したことに起因している可能性が考え られるが、その点に関してはさらに検討が必要であ る。

7. おわりに

本稿では、高速度ビデオカメラを用いた単一気泡 の非球形振動の観測結果から、膨張・収縮運動の非 線形性が歪振動の振動周波数に与える影響ついて検 討した。膨張・収縮運動の非線形性が弱い場合、歪 振動の基本周波数は駆動周波数の半分となり、理論 的な解析結果と一致した。また、膨張・収縮運動の 非線形性が強くなるに伴い歪振動の基本周波数は高 くなることが確認された。

<参考文献>

- T.G.Leighton : "The acoustic bubble", ACADEMIC PRESS, pp.204-205, 1994
- (2) F.R.Young : "CAVITATION", Oxford, pp.137-151, 198
- (3) K.Yoshida, S.Nakatani, Y.Watanabe : *IEEE Proc.* (2006) to be appeared
- (4) 引間勝昭・渡辺好章:電子情報通信学会論文誌 A、Vol.J89-A、No.9、pp.695-697、2006.09.01
- (5) T.Asase and Y.Watanabe : Jpn. J. Appl. Phys. Vol.43, No.1, pp.403-404, 2004
- (6) M.S.Plesset : J. Appl Phys., Number1 25, 96 (1954)
- (7) K.Yoshida, Y.Watanabe : Proc.ISNA. 2005
- (8) Y.Hao and A.Prosperetti : Phys. Fluids, Vol.11, No.6, pp.1309-1317, 1999

吉田 憲司

同志社大学 大学院 工学研究科 電気工学専攻 博士後期課程 〒610-0321 京都府京田辺市多々羅都谷1-3 TEL:0774-65-6300 FAX:0774-65-6300

E-mail: etf1103@mail4.doshisha.ac.jp

渡辺 好章

同志社大学 工学部 電子工学科 教授 〒610-0321 京都府京田辺市多々羅都谷1-3 TEL:0774-65-6268 FAX:0774-65-6814 E-mail:kwatanab@mail.doshisha.ac.jp